Development of Fatigue Models for Copper Traces on Printed Wiring Assemblies under Quasi-static Cyclic Mechanical Bending

نویسندگان

  • Daniel M Farley
  • Abhijit Dasgupta
چکیده

Title of Document: DEVELOPMENT OF FATIGUE MODELS FOR COPPER TRACES ON PRINTED WIRING ASSEMBLIES UNDER QUASI-STATIC CYCLIC MECHANICAL BENDING. Daniel M Farley, Doctor of Philosophy, 2010 Directed By: Professor Abhijit Dasgupta Department of Mechanical Engineering This dissertation investigates the fatigue durability of copper (Cu) traces on printed wiring assemblies (PWAs) under quasi-static cyclic mechanical flexure, using experimental results from a set of three-point bending fatigue tests, finite element (FE) modeling of the stresses generated during the cyclic bending tests, and response surfaces (RS) to facilitate iterative assessment of the model constants. Cyclic three-point bend tests were conducted on land grid array (LGA) components during this investigation. Failure analysis revealed the fatigue failure sites to be in the Cu traces, at the outer edge of the foot-print of the solder joint. A threedimensional, elastic-plastic FE model simulating the event (based on a global and local modeling strategy) was used to determine the stresses and strains occurring at the failure site during the cyclic loading. Parametric studies were conducted to examine the influence of elastic-plastic constitutive behavior on the stress and strain states at the failure site. Results of the parametric studies were captured in compact meta-models, using polynomial response surfaces. The durability data was collected from the experiment and used in conjunction with these models, to develop a set of compatible constitutive and fatigue model constants that best fit the behavior observed. Since the loading was not fully reversed, a mean stress correction factor was needed. Existing correction methods, such as the modified Morrow model, were found to be deficient for tensile means stresses, due to high mean stresses predicted by classical constitutive models. A new correction model was proposed, based on a “tanh” term, which forced a saturation of the mean stress effect at higher stress levels for tensile means stresses. This saturation effect was also considered for compressive loading, termed the BCS model (“B” for “bounded” effect of the mean stresses), and compared with the standard unbounded model, termed the UCS model. A detailed iterative methodology was developed to iterate the Cu elastic-plastic constitutive model constants as well as the cyclic fatigue model constants needed to satisfy the observed durability behavior. This iterative model was based on the average strain values in cross section of the trace, at the failure site. The resulting fatigue model constants were termed the “averaged fatigue constants (AFCs). To further improve on the fatigue constants, the fatigue damage initiation and propagation behavior were considered separately, using a continuum damage mechanics method termed the successive initiation method. In this phase of the study, the constitutive model constants were those determined from the AFC model. This method uses an incremental damage growth concept rather than a classical fracture propagation concept, since there is distributed damage observed in the experiment. The resulting fatigue constants were termed the incremental fatigue constants (IFCs). Finally, the validity of the modeling approach and the developed AFC and IFC model constants are explored, using results from a published case study of four-point cyclic bend tests of leadless chip resistors (LCRs). The model appears to predict the results reasonably well. DEVELOPMENT OF FATIGUE MODELS FOR COPPER TRACES ON PRINTED WIRING ASSEMBLIES UNDER QUASI-STATIC CYCLIC MECHANICAL BENDING.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Properties of Graphene/Epoxy Nanocomposites under Static and Flexural Fatigue Loadings

In the present study, the effect of various weight fractions of graphene nanoplatelet (GPL) on flexural fatigue behavior of epoxy polymer has been investigated at room temperature and generally the temperature was monitored on the surface of specimen during each test. The flexural stiffness of grapheme nano-platelet/epoxy nanocomposites at 0.1, 0.25 and 0.5 wt. % as a main effective parameter o...

متن کامل

Board Level Reliability Evaluation of Low Silver (ag) Content Lead-free Solder Joints at Low Strain Rates

To improve the durability of lead free solder joints under high strain rates, such as drop and shock loading, some area array manufacturers have converted to low silver (Ag) content tin silver copper (SAC) solder spheres instead of the commonly accepted SAC305 solder. While the lower silver content SAC solder joints may address high strain rate shock loads, the durability of these joints under ...

متن کامل

ABSTRACT Title of Dissertation: EFFECT OF DYNAMIC FLEXURAL LOADING ON THE DURABILITY AND FAILURE SITE OF SOLDER INTECONNECTS IN PRINTED WIRING ASSEMBLIES

Title of Dissertation: EFFECT OF DYNAMIC FLEXURAL LOADING ON THE DURABILITY AND FAILURE SITE OF SOLDER INTECONNECTS IN PRINTED WIRING ASSEMBLIES Joseph Varghese, Doctor of Philosophy, 2007 Dissertation directed by: Professor Abhijit Dasgupta Department of Mechanical Engineering This dissertation investigates the durability of solder interconnects of area array packages mounted on Printed Wiring...

متن کامل

On the effect of grain size on rock behavior under cyclic loading by distinct element method

It is well-known that the mechanical behavior of rocks under cyclic loading is much different from static loading conditions. In most constructions, the load applied to structures is within dynamic ranges. That’s why a great deal of attention has been paid towards this field in order to identify the dynamic behavior of rocks in more details. Nevertheless, the nature of dynamic failure in rocks ...

متن کامل

Finite element analysis of fatigue damage in passenger-car diesel engine cylinder head under cyclic thermo-mechanical loadings

In this article, the thermo-mechanical fatigue lifetime of the cylinder head of a passenger-car diesel engine has been estimated. At the first stage, stress and strain distributions in the cylinder head have been calculated using the two-layer visco-plastic model, available in the ABAQUS software. The calibration of the model was performed, using correlating of simulated hysteresis curves and l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010